DSC - 210

III Year B.Sc. Examination, Sept./Oct. 2012 (Directorate of Distance Education) PHYSICS

Paper – III: Spectroscopy, Wave Mechanics, Statistical Mechanics, Relativity and Astrophysics

Time: 3 Hours Max. Marks: 75/85

Instructions: 1) Students who have attended 25 marks IA Scheme will have to answer for total of 75 marks.

- 2) Students who have attended **15** marks **IA** Scheme will have to answer for total of **85** marks.
- 3) Section **E** is **compulsory** for **85** marks Scheme only.

SECTION - A

I. Answer all questions.

 $(10 \times 1 = 10)$

- 1) What is the effect of nuclear mass on wavelength of a spectral line?
- 2) Mention any one use of Pauli's exclusion principle.
- 3) Why production of continuous X-rays is considered as an inverse process of photo electric effect ?
- 4) Why non-polar molecules do not show rotational spectra?
- 5) What do you mean by light amplification in case of laser?
- 6) What is the physical significance of square of magnitude of a wave function?
- 7) Define thermodynamic probability in statistical mechanics.
- 8) Define absolute magnitude of a star.
- 9) Why Lorentz transformation equations are preferred to Galilean transformation equations?
- 10) Why material particles cannot have velocity equal to or greater than the velocity of light?

SECTION - B

II. Answer any FIVE questions.

 $(5 \times 3 = 15)$

- 11) What are the factors that lead to the concept of electron spin?
- 12) What is anomalous Zeeman effect? Explain why normal Zeeman effect occurs only in atoms with even number of electrons.
- 13) What is population inversion? Explain why three levels are required for laser action.
- 14) What is Raman effect? Explain why stokes lines are more intense than antistokes lines.
- 15) State Mosley's law. What is its importance?
- 16) State de Broglie hypothesis. Why electrons are used in electron microscope?
- 17) Obtain the relativistic energy-momentum relation.

SECTION - C

III. Answer any FIVE questions.

 $(5 \times 6 = 30)$

- 18) Describe Thomson's method of determining e/m of electron
- 19) Give the quantum theory of normal Zeeman effect.
- 20) State and derive Bragg's law. Mention any one of its applications.
- 21) What are distinguishable and indistinguishable particles? Derive Planck's Law from Bose-Einstein statistics.
- 22) Derive Schrodinger's time-dependent wave equation.
- 23) State Postulates of general theory of relativity. Give Einstein's theory of gravitation.
- 24) What is Chandrashekar's limit? Explain how a main sequence star becomes a neutron star.

SECTION - D

IV. Answer any TWO questions.

 $(2 \times 10 = 20)$

- 25) a) Obtain an expression for magnetic moment due to orbital motion of the electron and hence define Bohr magneton.
 - b) Determine the maximum separation of a beam of hydrogen atoms that moves a distance of 20 cm with a speed of 2×10^5 m/s perpendicular to a magnetic field, whose gradient is 2×10^{-24} T/m and $M_H = 1.67 \times 10^{-27}$ kg. (6+4)
- 26) a) Derive the expression for compton shift.
 - b) In the Raman experiment using mercury green of wavelength 546.1 nm, a stokes line of wavelength 554.3 nm was observed. Find the Raman shift and frequency corresponding to the anti-stokes line. (7+3)
- 27) a) With a neat diagram, explain the construction and working of He-Ne laser.
 - b) What are the characteristics of a laser beam? (7+3)
- 28) a) Set up Schrodinger wave equation for a particle in one dimensional potential box and solve it to obtain expressions for energy eigen values and eigen functions.
 - b) The position and momentum of 1KeV electron are simultaneously determined. If its position is located within 0.4 nm, what is the percentage uncertainty in its momentum? (6+4)

SECTION - E

V. Answer **any ONE** of the following questions.

(Compulsory question for 85 marks Scheme only) (1×10=10)

- 29. a) State Postulates of special theory of relativity. Derive velocity addition theorem and hence show that maximum attainable velocity is velocity of light.
 - b) A clock keeps correct time. With what speed should it be moved relative to an observer so that it may seem to lose one minute in one-day? (7+3)
- 30) a) State Hubble's law. Write short notes on white dwarfs and black holes.
 - b) The apparent magnitude of the star Sirius A is -1.44 and that of star Regulus is +1.36. Calculate the relative brightness of the star Sirius A with respect to Regulus. (6+4)